

# ANALYTICAL CHARACTERIZATION OF GRAPES AT DIFFERENT STAGES OF RIPENING FOR THE VALORISATION OF BY-PRODUCTS

ÎLE DE PORQUEROLLES 9 - 12 SEPTEMBER 2025







<u>Núria Vera</u><sup>1</sup>, Jokin Ezenarro<sup>2</sup>, Ángel García-Pizarro<sup>1,3</sup>, Montserrat Mestres<sup>1</sup>, Ricard Boqué<sup>1</sup>, Itziar Ruisánchez<sup>1</sup>

<sup>1</sup>Universitat Rovira i Virgili. Department of Chemistry and Organic Chemistry. C/Marcel·lí Domingo 1, Tarragona, 43007, Spain. <sup>2</sup> Department of Food Science, University of Copenhagen, Rolighedsvej 26, Frederiksberg C 1958, Denmark <sup>3</sup>Fruit Production Program, IRTA Mas Bové, Ctra. Reus-El Morell Km 3.8, Constantí, 43120 Tarragona, Spain

chemosens@urv.cat

www.chemosens.recerca.urv.cat

#### Introduction

Grape ripening is a multivariate process involving sugars, acids, phenolics, and volatiles, whose combined evolution defines grape and wine quality [1]. Climate change increasingly disrupts these dynamics, creating mismatches between technological, phenolic, and aromatic maturity [2]. At the same time, grape by-products (skins, seeds, must) are valuable sources of bioactive compounds, but their valorisation depends on harvest timing and compositional monitoring [3]. Chemometric tools such as PCA, ASCA, and PLS provide powerful means to unravel the effects of ripening stage, variety, and vineyard microclimate, enabling a more precise understanding of grape development and supporting sustainable strategies for valorisation.

## Aim of study

Grape ripening drives biochemical changes that shape wine quality and by-product potential. Garnatxa Negra (Grenache) and Cabernet Sauvignon were selected as the grape varieties due to their differences in maturity. Both of them were studied across ripening stages and orientations using physicochemical, volatile, and MIR analyses combined with ASCA



To establish a chemometric framework to monitor ripening dynamics and guide the sustainable valorisation of grape by-products under climate variability

### Materials and Methods




Cabernet Sauvignon Grenache



6 or 7 maturity points around the optimum harvest point



considered: orientations northeast and southwest



(TSS and pH) Must Polyphenol content Volatile compounds Polyphenol content Skin • MIR Polyphenol content Seeds • MIR

Maturity control

ANOVA – Simultaneous Component Analysis (ASCA)

Characterize grape by-products at different stages of ripeness in order to enhance their value and improve grape industry profits

## Results

#### Must

Table 1: ASCA on must volatile composition

| Factor                                 | Effect (%)                | Effect (%) |  |
|----------------------------------------|---------------------------|------------|--|
|                                        | <b>Cabernet Sauvignon</b> | Grenache   |  |
| Harvest time                           | 45.25*                    | 48.94*     |  |
| Grape Position                         | 4.30*                     | 9.14*      |  |
| Harvest Time x Grape position          | 24.34*                    | 24.38*     |  |
| Residuals                              | 26.11                     | 17.55      |  |
| *C++++++++++++++++++++++++++++++++++++ |                           |            |  |

\*Statistically significant effects (p value < 0.05)

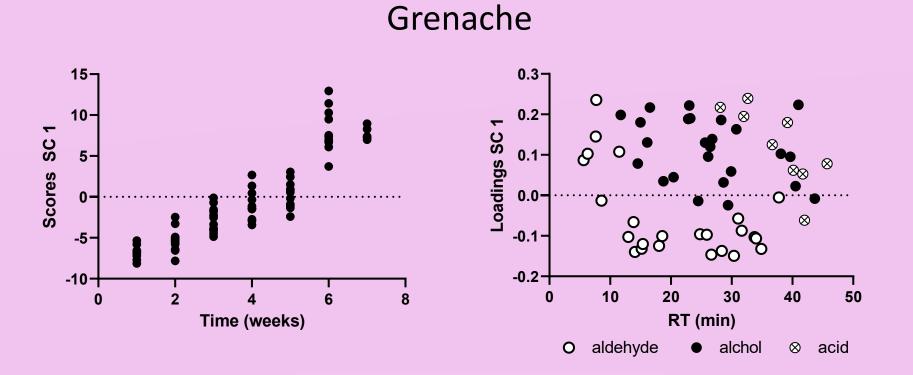
#### Skins

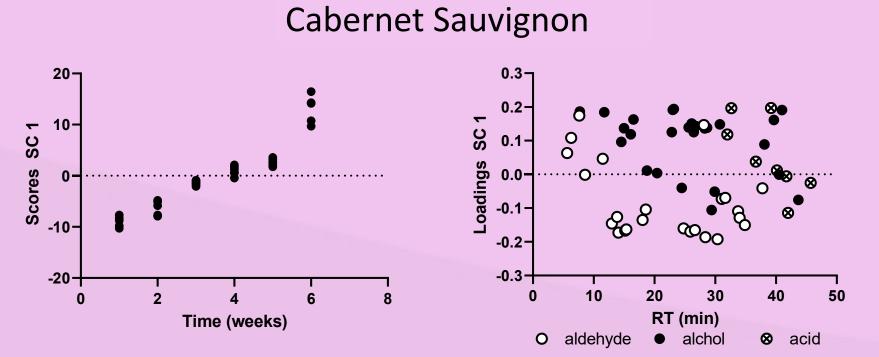
Table 2: ASCA on grape skin MIR spectra

| Factor                                              | Effect (%)                | Effect (%) |
|-----------------------------------------------------|---------------------------|------------|
|                                                     | <b>Cabernet Sauvignon</b> | Grenache   |
| Harvest time                                        | 20.55*                    | 13.18*     |
| Grape Position                                      | 3.14*                     | 4.77*      |
| Harvest Time x Grape position                       | 21.83*                    | 5.40*      |
| Residuals                                           | 54.48                     | 75.94      |
| *Statistically significant effects (p value < 0.05) |                           |            |

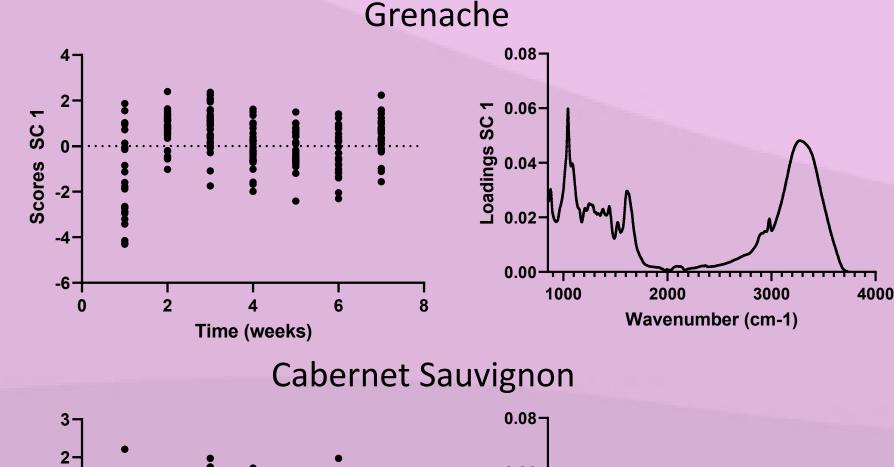
## Seeds

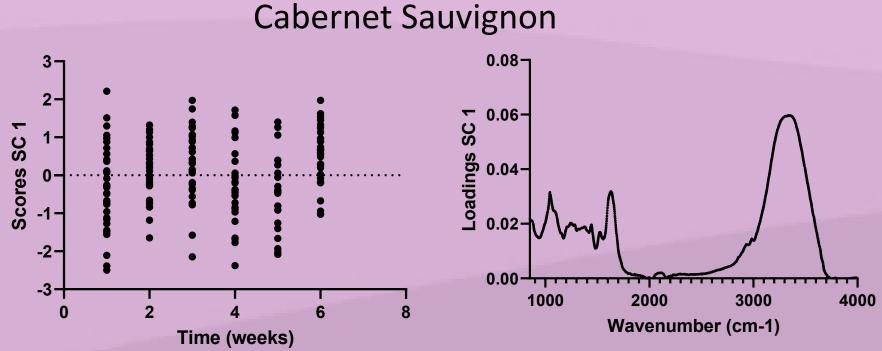
| Table 3: ASCA on | seed MIR spectra |
|------------------|------------------|
| Factor           |                  |


| Factor                                               | Effect (%)         | Effect (%) |  |
|------------------------------------------------------|--------------------|------------|--|
|                                                      | Cabernet Sauvignon | Grenache   |  |
| Harvest time                                         | 14.04*             | 16.92*     |  |
| Grape Position                                       | 0.58               | 1.01       |  |
| Harvest Time x Grape position                        | 8.42*              | 9.01*      |  |
| Residuals                                            | 79.96              | 73.03      |  |
| *Statistically significant offosts (n. value < 0.05) |                    |            |  |

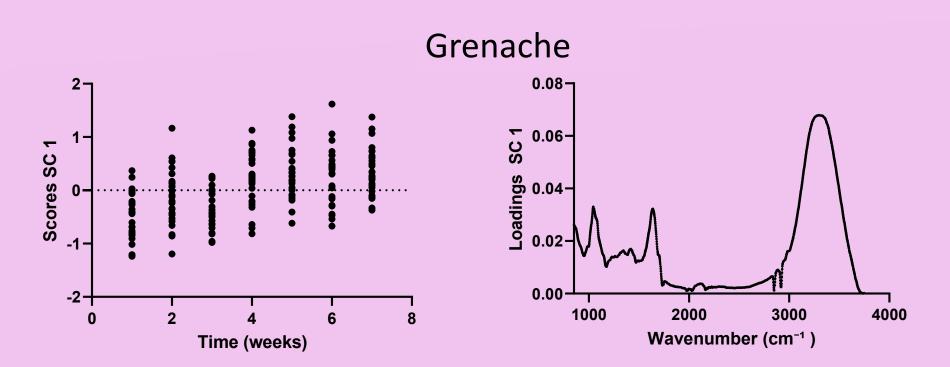

Statistically significant effects (p value < 0.05)

ASCA analysis confirms harvest season as the dominant source of variability. While grape position significantly influences must and skins, this effect is negligible in seeds, where score distributions cluster around harvest, indicating less pronounced changes.

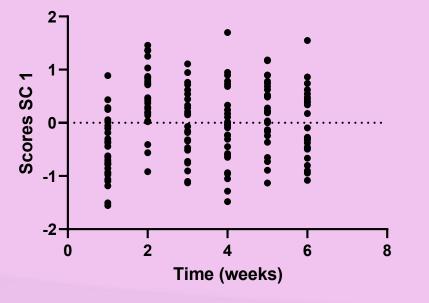

#### Volatile compounds in the must

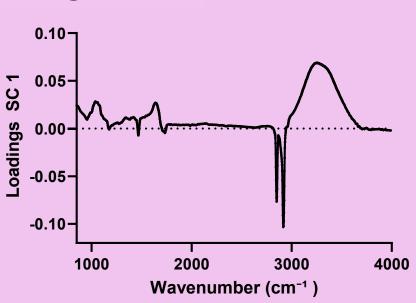

Crushing






Harvest time factor separates ripening stages, with aldehydes linked to green phases, alcohols to intermediate ripening, and acids to overripe profiles.




#### MIR spectra of grape-skins









Harvest time factor scores track ripening in skins: phenolicassociated spectral regions (3000-3700 cm<sup>-1</sup>) is the major driver, showing a progressive accumulation in Grenache and a more dynamic evolution in Cabernet Sauvignon

#### MIR spectra of grape-seeds

In seeds, O-H stretching associated with phenolic compounds (3000–3700 cm<sup>-1</sup>) is the primary marker of ripening, displaying a steady progression in Grenache and a more dynamic trajectory in Cabernet Sauvignon. However, this evolution is less pronounced than in must and skins, as seeds had already transitioned to the lignified (woody) phase by harvest.

#### Conclusions

- » Must: Volatile composition evolves markedly with ripening, discriminating green, ripe, and overripe stages. Cabernet Sauvignon retained more green-associated volatiles, whereas Grenache developed a fruitier, riper profile.
- » Skins: Polyphenols and anthocyanins peaked around optimal harvest. MIR spectra highlighted varietal differences in phenolic accumulation and climate responses. Cluster position also influenced composition, with northeast-exposed grapes showing more advanced maturity.
- » Seeds: Less affected by sun exposure, but still exhibited ripening-related changes. Grenache followed a linear maturation, while Cabernet Sauvignon showed a more variable trajectory.



Chemometrics reveals varietal ripening patterns and enables sustainable valorisation of grape by-products

## References

[1] J. A. Kennedy, Cienc. Inv. Agr., 2008, 35(2), 77–90.

[2] C. van Leeuwen, P. Darriet, J. Wine Econ., 2016, 11(1), 150–167.

[3] I.I. Rockenbach, E. Rodrigues, L.V. Gonzaga, V. Caliari, M.I. Genovese, A.E.S.S. Gonçalves, R. Fett, Food Chem., 2011, 127, 174.

## Acknowledgements

Grant of the Department of Research and Universities of the Generalitat de Catalunya to the research group CHEMOSENS (Code: 2021 SGR 00705)

Grant URV Martí Franques (2024PMF-PIPF-41)

Grant URV Department of Analytical Chemistry and Organic Chemistry





